
The Rust 2018 Module System

Josh Triplett
josh@joshtriplett.org

RustConf 2019



History





RFC: In order to form a more perfect union



Adding C-style unions to Rust

to support building virtual machines

based on Linux and /dev/kvm



crosvm

Firecracker

rust-vmm

Cloud Hypervisor



Not just about a specific language feature



RFC: In order to form a more perfect Rust

Case study on the RFC process and evolving Rust





Language team and Cargo team



New module system developed for Rust 2018



Language team and processes



Ergonomics



Simplicity

and consistency



Simplicity and consistency



January 2017: Module system discussion begins





Rust 2015 modules



module: organizational unit of code

crate: library, a group of modules



mod example; // module from example.rs

mod example {

// inline module contents

}



Cargo.toml dependencies:

clap = "version"

main.rs or lib.rs:

extern crate clap;

use clap::Arg; // optional

fn parse_args() {

let app = clap::App::new("example")



Top-level module: main.rs or lib.rs



Most crates start with just one module



Paths for crates worked differently in
submodules, discouraging modularity



extern crate clap;

mod submodule {

use clap::Arg;

fn parse_args() {

let app = ::clap::App::new("example");

}

}



Paths for submodules also worked
differently in submodules



mod m {

pub struct S1;

pub struct S2;

}

use m::S1;

fn f(arg1: S1, arg2: m::S2) {}



mod submodule {

mod m {

pub struct S1;

pub struct S2;

}

use self::m::S1; // absolute by default

fn f(arg1: S1, arg2: m::S2) {}

}



Big surprises when introducing modules
to an existing one-file project



Many other improvements desired



Development and consensus processes



Requirements

• No extern crate

• Same syntax for top-level module and submodules



Extensive discussion in lang team meetings,
and on internals.rust-lang.org and Discord

extern:: (and variants) versus crate::

Three RFCs (2108, 2121, 2126)



Extensive discussion in lang team meetings,
and on internals.rust-lang.org and Discord

extern:: (and variants) versus crate::

Three RFCs (2108, 2121, 2126)



Extensive discussion in lang team meetings,
and on internals.rust-lang.org and Discord

extern:: (and variants) versus crate::

Three RFCs (2108, 2121, 2126)



Approach: anchored use paths

(Named later when we needed to distinguish it.)



use paths always started with a crate:

cratename:: An external crate
crate:: The top of the current crate
self:: The current module

super:: The parent module



Language team consensus on RFC 2126
“Path Clarity”

Not fully satisfying

Mixed community reaction



Language team consensus on RFC 2126
“Path Clarity”

Not fully satisfying

Mixed community reaction



Language team consensus on RFC 2126
“Path Clarity”

Not fully satisfying

Mixed community reaction



“These situations are particularly bad in Rust 2015
because the code works without self::

at the top level module, but not elsewhere.”

“Rust 2018’s current design helps by making the
code not work anywhere.”



“These situations are particularly bad in Rust 2015
because the code works without self::

at the top level module, but not elsewhere.”

“Rust 2018’s current design helps by making the
code not work anywhere.”



Would have required changing
most existing Rust code

rustfix could have helped, but still. . .



June 2018: I reached out to Aaron,
to propose and discuss an alternative.



New Requirements

• No extern crate

• Same syntax for top-level module and submodules

• Uniform paths between use and expressions

• Compatible with most Rust 2015 code



Concept: Uniform path resolution

Check identifiers in scope,
then crates and prelude



// Rust 2018

mod submodule {

mod m {

pub struct S1;

pub struct S2;

}

use m::S1; // Looks for self-relative names

fn f(arg1: S1, arg2: m::S2) {}

}



// Rust 2018

mod submodule {

use clap::Arg; // Looks for crate names

fn parse_args() {

let app = clap::App::new("example");

// crate names work in expressions too

}

}



Only ambiguous if a name in scope
conflicts with an extern crate name

Require disambiguation:

crate::toplevelname

self::localname

::cratename



Only ambiguous if a name in scope
conflicts with an extern crate name

Require disambiguation:

crate::toplevelname

self::localname

::cratename



uniform_paths

vs
anchored_use_paths



Reluctance towards a new round of debate

Do not meddle with name resolution,
for it is subtle and quick to anger

Meaningful differences in values and
preferences among lang team members



Reluctance towards a new round of debate

Do not meddle with name resolution,
for it is subtle and quick to anger

Meaningful differences in values and
preferences among lang team members



Reluctance towards a new round of debate

Do not meddle with name resolution,
for it is subtle and quick to anger

Meaningful differences in values and
preferences among lang team members



Successful technical implementation



Sought community feedback



Careful discussion and introspection
on conflicting core values



Released 1.31 and Rust 2018
with a compromise solution:

Error on ambiguity
Forward compatibility with either approach



Lang team collaboratively wrote a
document about both alternatives



Made the decision shortly thereafter



Finished uniform paths in 1.32



A few more details. . .



Macros



// Rust 2015

#[macro_use] extern crate clap;

// Imports *all* macros

fn main() {

println!("{}", crate_name!());

}



// Rust 2018

use clap::crate_name;

fn main() {

println!("{}", crate_name!());

}



// Rust 2018

fn main() {

println!("{}", clap::crate_name!());

}



Macro paths work like function paths



You can have foo.rs and foo/bar.rs

You no longer need to use foo/mod.rs instead



Crate renaming in Cargo
Replacement for extern crate foo as bar

cargo-features = ["rename-dependency"]

[dependencies]

bar = { package="foo", version="..." }



Possible future work



Implicit mod example; for example.rs

Separated due to controversy

Interest remains



Implicit mod example; for example.rs

Separated due to controversy

Interest remains



crate visibility
synonym for pub(crate)

Separated due to corner case:

struct S(crate ::T));

Visibility or scope?



crate visibility
synonym for pub(crate)

Separated due to corner case:

struct S(crate ::T));

Visibility or scope?



Reflecting on difficult decisions



async/await

Final syntax stabilized for 1.39!



async/await

Final syntax stabilized for 1.39!



Summary

• Beware of satisficing solutions

• Raise issues early; people grow attached to
“experimental” and “interim” solutions

• Introspect on core values, including your own

• Work collaboratively towards each others’ values

• Seek satisfying solutions whenever possible



Summary

• Beware of satisficing solutions

• Raise issues early; people grow attached to
“experimental” and “interim” solutions

• Introspect on core values, including your own

• Work collaboratively towards each others’ values

• Seek satisfying solutions whenever possible



Summary

• Beware of satisficing solutions

• Raise issues early; people grow attached to
“experimental” and “interim” solutions

• Introspect on core values, including your own

• Work collaboratively towards each others’ values

• Seek satisfying solutions whenever possible



Summary

• Beware of satisficing solutions

• Raise issues early; people grow attached to
“experimental” and “interim” solutions

• Introspect on core values, including your own

• Work collaboratively towards each others’ values

• Seek satisfying solutions whenever possible



Summary

• Beware of satisficing solutions

• Raise issues early; people grow attached to
“experimental” and “interim” solutions

• Introspect on core values, including your own

• Work collaboratively towards each others’ values

• Seek satisfying solutions whenever possible



Acknowledgments

• Aaron Turon

• eddyb, cramertj, and petrochenkov

• The Rust language team

• The incredible Rust community



Acknowledgments

• Aaron Turon

• eddyb, cramertj, and petrochenkov

• The Rust language team

• The incredible Rust community



Thank you!

josh@joshtriplett.org

Twitter: @josh_triplett


